If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+27x-10=0
a = 5; b = 27; c = -10;
Δ = b2-4ac
Δ = 272-4·5·(-10)
Δ = 929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-\sqrt{929}}{2*5}=\frac{-27-\sqrt{929}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+\sqrt{929}}{2*5}=\frac{-27+\sqrt{929}}{10} $
| (3x+10)/2+5=19 | | 3x+7=8x+-8 | | 2c+12=9c-16 | | 8362=23m | | x+50=7x+44 | | 3b-16b=-2+14 | | –3=–(w−10) | | (2x+18)-x=4 | | 2=3(r+1)-7 | | 35x^2-23x-72=0 | | 2-9b=79 | | -(k-14)=0 | | 10-1.15=n | | 5(3-x)+(3-x)=14 | | 4v=567 | | 3^5y+2=27^2y+1 | | 6x+16=4x-6 | | -17=1/5m-20 | | 3(b-14)-4=2 | | x*8=12 | | 4(g+1)-1=11 | | 4(g+1-1=11 | | 3x+6=-1×+6 | | -5+x/9=-4 | | 6x-48=4x+12 | | -5x/9=-4 | | x+2.4=19 | | 7/2(x-0.5)=5 | | 3+(7+10)=g+30 | | 9x-4=-103 | | -15-4x=11 | | 5+.04m=2+.10m |